GENERAL INFORMATION AND USE OF ROOF LOAD TABLES

General

Presented in the Accuform Metalroof deck load tables are allowable uniformly distributed loads.

Steel

Specification - Conforms to ASTM A653 Grade 33; Yield stress 33 ksi and tensile stress of 45 ksi

Finishes–G60 or G90. For heavier galvanizing, refer to ASTM A653.

Design Considerations

Strength–Allowable Strength Design (ASD) principles were used in the development of the allowable loads in accordance with AISI S100-16, *North American Specification for the Design of Cold Formed Steel Structural Members.* Bending, shear and web crippling are the strength considerations.

The allowable uniformly distributed strength load (S) in the table must be equal to or greater than

(Dead load, DL, + Live load, LL)

Web Crippling – The web crippling strength can vary with the bearing length. The allowable web crippling loads are based on an end bearing length, $N_e = 1.5$ " and interior bearing length, $N_i =$ 3.0". If the bearing lengths are less than the specified values, the allowable uniformly distributed loads must be checked for the bearing length under consideration (See Example).

Serviceability (Deflection) – The effective moment of inertia for deflection determination is calculated based on an assumed live load stress of $0.6F_{v}$.

The allowable uniformly distributed deflection load (D) in the table must be equal to or greater than

(Live load, LL).

Example (Use of Load Table)

1.5" ROOF DECK

Given:

- □ 3-SPAN continuous, L = 7.5ft each span
- Deck thickness, t = 0.0300 in; $F_y = 33$ ksi
- □ L/240 deflection limit
- End bearing length, $N_e = 1$ in.
- $\Box \quad \text{Interior bearing length, } N_i = 2 \text{ in.}$
- Nominal loads
- 1) Dead loads (DL)

a) deck 2.0psf

b) superimposed <u>10.0psf</u>

 $\mathsf{DL} = \underline{12.0\mathsf{psf}}$

2) Live load (LL) LL = <u>40.0psf</u>

Solution:

- Strength
- 1) Total load [LL + DL] [40 + 12.0] = <u>52.0psf</u>
- 2) Allowable load (from Table under "S")

is $\underline{55psf}$ (Based on N_e = 1.5 in. and N_i = 3.0 in.)

Since 55psf>52.0 psf OK

- 3) Check end web crippling ($N_e = 1$ in.)
- a) End reaction
- $0.400(w)7.5 = P_e$

b)Allowable end reaction (from Section Property Table)

$$P_e = P_{e1} + P_{e2} \sqrt{N/t}$$

$$P_e = 198 + 49.4 \sqrt{1/0.0300} = \frac{483 \text{lb/ft}}{1000}$$

w = 483/0.400/7.5 = <u>161psf</u>

Since 161psf>52.0 psf OK

- 4) Check interior web crippling $(N_i = 2 \text{ in.})$
- a) Interior reaction
 - $1.10(w)7.5 = P_i$

b) Allowable interior reaction (from Section Property Table)

$$P_i = P_{i1} + P_{i2}\sqrt{N/t}$$

$$P_i = 392 + 66.7 \sqrt{2/0.0300} = \frac{937 \text{ lb/ft}}{2}$$

Since 114psf>52.0 psf OK

Deflection

From Table under "D" (L/180) = 67psf> 40 psf OK For L/240, multiply 67 by (180/240) = <u>50.3psf</u> Since **50.3psf> 40psf**OK